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Preface

The state of the art in optical characterization of materials is advancing
rapidly. New insights into the theoretical foundations of this research
field have been gained and exciting practical developments have taken
place, both driven by novel applications and innovative sensor tech-
nologies that are constantly emerging. The big success of the inter-
national conferences on Optical Characterization of Materials in 2013,
2015, 2017, 2019, 2021 and 2023 proves the necessity of a platform to
present, discuss and evaluate the latest research results in this interdis-
ciplinary domain. Due to that fact, the international conference on Op-
tical Characterization of Materials (OCM) took place the seventh time
in Karlsruhe, Germany from March 26-27, 2025. The aim of this confer-
ence was to bring together leading researchers in the domain of Char-
acterization of Materials by spectral characteristics from UV (240 nm) to
IR (14 µm), multispectral image analysis, X-ray methods, polarimetry,
and microscopy. Typical application areas for these techniques cover
the fields of, e.g., food industry, recycling of waste materials, detection
of contaminated materials, mining, process industry, and raw materi-
als.

The OCM 2025 was organized by the Karlsruhe Center for Spectral
Signatures of Materials (KCM) in cooperation with the German Chap-
ter of the Instrumentation & Measurement Society of IEEE. The Karls-
ruhe Center for Spectral Signatures of Materials is an association of
institutes of the Karlsruhe Institute of Technology (KIT) and the busi-
ness unit Advanced Sensing of the Fraunhofer Institute of Optronics,
System Technologies and Image Exploitation IOSB.

This year again the organizing committee has had the pleasure to
evaluate a large amount of contributions. Based on the submissions, we
selected 33 papers as posters and talks, a plenary lecture and several
practical demonstrations. The present book is based on the conference
and contains extended versions of the submitted abstracts.

The editors would like to thank all authors that have contributed
to these proceedings as well as the reviewers, who have invested a
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Preface

generous amount of their time to suggest possible improvements of the
papers. The help of Lukas Dippon and Jürgen Hock in the preparation
of this book is greatly appreciated. Last but not least, we thank the
organizing committee of the conference, led by Britta Ost, for their
effort in organizing this event. The excellent technical facilities and the
friendly staff of the Fraunhofer IOSB greatly contributed to the success
of the conference.

March 2025 Jürgen Beyerer
Thomas Längle

Michael Heizmann
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Automated data acquisition method for

sensor-based real-time material flow

characterization of recyclable waste streams

using sensor fusion: A case study

Fabian Roth, Aydin Deliktas, Kaushik Rattawa, Alexander Feil, and
Kathrin Greiff

RWTH Aachen University, Department of Anthropogenic Material Cycles,
Wüllnerstraße 2, 52062 Aachen

Abstract In recent years, the development of real-time applica-
tions has become increasingly popular in the field of sensor-
based systems and recyclable waste streams. One promising
method is sensor-based real-time characterization (SBRTC) in-
volving object detection or instance segmentation models as well
as specific datasets containing recyclable materials to assess the
quality of material flows. Building such models requires image
data for training, testing and validation. This process is labor-
intensive and prone to error, mainly when conducted manually.
Here, we explore two approaches for the acquisition on conveyor
belts: In approach I, a rotary encoder (a) and pre-defined time
intervals (b) are compared to reduce acquisition gaps and redun-
dancies, thereby improving data quality. The data acquisition
was possible with a mean relative acquisition error (MRAE) of
about 0% (a) and up to 66% (b). Approach II demonstrates the
technical feasibility of object tracking which allows the counting
of particles in a real-time video stream by leveraging Kalman Fil-
ter (KF), K-Nearest Neighbor (KNN), and Hungarian Maximum
Matching (HMM). An accuracy of 99% ± 1% could be achieved.
Therefore, this work contributes to novel data acquisition meth-
ods for high resolution RGB area images of SBRTC applications
to effectively address the challenges of noisy and biased real-
world datasets making it easier to perform data splitting.

Keywords Sensor-based real-time characterization, data acqui-
sition, data quality, object tracking, computer vision
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1 Introduction

In 2020, the European Union generated a total of 8.6 million tons of
non-hazardous, non-ferrous metal waste, of which Germany accounted
for 16.6%, ranking as the largest producer [1]. One key factor in reduc-
ing the environmentally and economically expensive consumption of
primary non-ferrous raw materials is the transition towards a circular
economy (CE). This aims at substituting more and more primary
raw materials with secondary raw materials [2]. Therefore, reducing,
reusing, and recycling has gained increasing importance, and within
recycling, the characterization of recyclable waste streams has taken
on a key role [3]. For this reason, gaining information about material
characteristics is necessary for SBRTC of material flows. In order to
leverage SBRTC, extracting frames from real-world video sequences is
required to create novel datasets for inline analytics [4].
However, collecting and capturing images is both labor-intensive and
time-consuming, particularly when conducted manually [5, 6], as data
collection, acquisition, and preparation can account for 45% to 90%
of the total pre-processing time [7]. Moreover, a significant challenge
in extracting frames from video sequences using an RGB area camera
can be the issue of spatial and temporal correlation. That is, extracting
two consecutive frames can lead to redundancies, such as the repeated
occurrence of objects [8]. According to [6], a model’s perceived
performance can be artificially enhanced positively. This effect can
be attributed to the fact that objects extracted twice can be part of
both training and validation sets. Once a model is trained, it already
knows the object. Moreover, duplicates only in training data can also
falsely influence the model performance concerning generalization
capabilities, as the model memorizes objects which are ‘very similar’,
‘near duplicate’, or ‘exact duplicate’ [9]. That is, data sparsity and
redundancy can negatively impact the model’s performance in its
generalization capability by skewing the model and introducing a bias.
This bias is also known as data leakage [9, 10].
An automated data acquisition method for SBRTC of recyclable waste
streams using sensor fusion offers the possibility of overcoming these
limitations, i.e., avoiding acquisition gaps and redundancies.
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Data acquisition method for recyclable waste streams

Prior research has already demonstrated the suitability of rotary
encoders and various sensor types. While in the automotive and
manufacturing industries, rotary encoders are used to measure the
movement of conveyor belts accurately [11], an optical encoder was
used by [12] to start the acquisition of a line scan camera once the
conveyor belt reached a stable velocity for the reconstruction of a
3D material transportation status. Another study demonstrated the
calculation of the object length on a conveyor belt as it passes the
scanline of a LiDAR camera [13]. Furthermore, the combination of
RGB and magnetic sensors allows the determination of the rotational
movements while utilizing an endoscopic capsule robot [14]. To deal
with overlapping images, another study demonstrated a static acquisi-
tion method for scrap, where five frames per second were saved [15].
Moreover, rotary encoders allow high reliability and accuracy by
converting a rotary motion into a digital or analog signal comprising
several pulses per revolution [11]. However, using rotary encoders
with RGB area cameras for data acquisition, i.e., preventing duplicate
particle occurrences in the dataset by synchronizing camera acqui-
sition framerate and conveyor belt speed, seems largely unexplored
in literature. That is, sensor-based systems using optical sensors in
combination with a rotary encoder and object tracking represents a
relatively unsophisticated technology, thus offering untapped potential
to improve dataset creation. For this reason, this study aims at
improving the data quality of a data acquisition process by exploring
methods to address spatial redundancies in consecutive frames and
accurately determine ground truth data (i.e., true particle values) of
real-time video sequences. To this end, we address the following
research questions:

• RQ1: What is the impact of data acquisition without rotary en-
coder and how can spatial redundancies be prevented using a
rotary encoder in order to improve data quality?

• RQ2: To which extent is it possible to determine the ground truth
data of video sequences in real-time?
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2 Materials and Method

In this study, two approaches are investigated: Approach I compares
two methods to overcome the issue of spatial and temporal correlation.
For approach II, object tracking is leveraged to determine the dataset’s
ground truth.

2.1 Acquisition principles

The experimental setup for data acquisition comprises several key com-
ponents, as shown in Fig. 1: An industrial RGB camera (GV-77Q5WP-
C-HQ) (a) with a resolution of 4500 by 4500 pixels, a pixel size of 3.2
µm and a color depth of 12-bit to extract color features from a 2D im-
age with a framerate of 42 frames per second (FPS) at full resolution.
This results in 0.089 mm per pixel with a recording area of 370.3 mm
by 370.3 mm, which is illuminated by a diffuse illumination chamber
(Planistar 60-60-Sled-3-VAD-19w-O, 5700K) (b). Images were taken by
triggering a rotary sensor (MSK320) (c), which has a maximum an-
gle resolution of 0.006 °. Additionally, a rotary encoder (MR320) (d)
is mounted at the motor shaft, which sends up to 2000 impulses per
revolution on a single signal line(SIKO Global 2024). Afterwards, an
Arduino Nano v3 (e) receives data, which is transmitted to an indus-
trial workstation (f). Processing the received data in (e) requires the
circumference of a circle, which includes the radius of the motor shaft
(60 mm) and the thickness of the belt (1.8 mm). Following, the total
distance moved by the rotary encoder is compared with the total frame
length of the recording area (y-axis). Once the rotary encoder has been
moved to 370.3 mm, the total distance is set to zero, and the current im-
age is saved. Otherwise, the distance travelled by each impulse is accu-
mulated until the total distance is reached. Consequently, the recording
software requests a periodic update from the Arduino Nano v3, repeat-
ing the acquisition process until the conveyor belt speed reaches zero.

2.2 Experiment I: Spatial and temporal correlation (RQ1)

Extracting frames from a video sequence requires addressing the chal-
lenge of spatial and temporal correlation. According to [16], spatial and
temporal correlation is fundamental to analyzing object movement in
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Data acquisition method for recyclable waste streams
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Figure 1: General structure of the experimental setup: (a) rgb camera, (b) illumination
chamber, (c) rotary sensor, (d) rotary encoder, (e) Arduino Nano v3, f) indus-
trial workstation and (i) K-Nearest Neighbor (KNN) background subtraction,
(ii) Kalman Filter (KF), (iii) Hungarian Maximum Matching (HMM).

Figure 2: Consecutive frames over time (tn) of a video sequence with particles in t1 =′

red′, t2 =′ blue′, t3 =′ green′.

a video sequence as objects change their positions dynamically. In this
context, the spatial correlation is used to describe the location of objects
within a single frame. In contrast, the temporal correlation describes
the relationship between consecutive frames in a video sequence. As
shown in Fig. 2, the position of the objects ‘red’, ‘green, and ‘blue’
changes over time across consecutive frames.

As discussed in Section 1, one method for extracting frames from
a video sequence is to select the sixth frame (static), while another
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approach involves using an encoder (dynamic). For this reason, three
speed levels were initialized at 39 FPS, i.e. 0.1 m

s , 0.15 m
s and 0.24 m

s
(see Table 1), whereby the speed interval was set in incremental steps.
The time interval twoe for the static method is a fixed time interval
that remains constant at different speed levels. It was calculated using
an r.p.m. counter (PCE-DT 66) and the frame length of 370.3 mm.
Each n-frame (fwoe) was captured, e.g. a frame was extracted after
3.7 seconds at 0.1 m

s , which equates to one image being captured every
144.42 frames. Using an encoder involves the dynamic time interval
twe, which varies at different speed levels or intervals. That is, every
frame (fwe) is extracted depending on the conveyor belt’s speed.

Speed Level Speed Interval Time Interval Frame Interval
[ m

s ] [ m
s ] twoe twe fwoe fwe

0.10 0.10 3.70 s 3.70 s 144.42 144.42
0.10 0.15 3.70 s 2.47 s 144.42 96.28
0.10 0.24 3.70 s 1.54 s 144.42 60.17
0.15 0.10 2.47 s 3.70 s 96.28 144.42
0.15 0.15 2.47 s 2.47 s 96.28 96.28
0.15 0.24 2.47 s 1.54 s 96.28 60.17
0.24 0.10 1.54 s 3.70 s 60.17 144.42
0.24 0.15 1.54 s 2.47 s 60.17 96.28
0.24 0.24 1.54 s 1.54 s 60.17 60.17

Table 1: Speed levels and intervals at 39 FPS with the corresponding time interval
(twoe;twe) and frame interval ( fwoe; fwe).

To evaluate the acquisition performance, 50 particles (np) were
recorded at pre-defined speed and time intervals. Afterwards, the to-
tal number of particles (cp) within the recorded images was manually
counted to calculate the mean relative acquisition error (MRAE), which
can be denoted as Eq. (1):

MRAE(n, c) =
1

N

N

∑
p=1

|np − cp|

|np|
(1)

Where N is the number of the speed intervals.
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Data acquisition method for recyclable waste streams

2.3 Experiment II: Object tracking

In order to acquire ground truth particles at different speed levels (see
Table 2) from a monolayer input stream, object tracking was utilized
by leveraging three distinct algorithms, including KNN, KF and HMM
(see Fig. 1) : (1) KNN is a pixel-level background subtraction method
that determines the background by analysing the nearest neighbours
in a pixel’s “short-term-long-term” history [17]. In other words, the
number of frames (or pixel values) used to model the background is
determined by the history of the model (i). The model’s sensitivity to
changes is controlled by the Dist2Threshold (ii). Both parameters were
set to 60 (i) and depending on the speed level: 200, 300, 320, and 340,
respectively (ii). (2) KF is a statistical method for estimating the future
position of an object based on its previous and current position, includ-
ing both process noise covariance (PNC) (i) and measurement noise
covariance (MNC) (ii). While (i) quantifies the degree of uncertainty
associated with the behaviour and movements of the tracked object,
(ii) represents the uncertainty inherent in the observations, capturing
the inaccuracies and noise present in the measurement process [18].
In enhancing KF’s responsiveness to changes at higher speed levels,
(i) a scaling factor of 0.9 was set using a 4x4 matrix. Furthermore, a
2x2 matrix with a scaling factor of 0.5 and 0.3, respectively (ii), was
defined to prevent missing changes in fast-moving objects. (3) In or-
der to overcome the assignment problem in consecutive frames, HMM
leverages inputs from (1) and (2) by calculating a cost matrix with a
maximum distance of 70, thus assigning unique identifiers to each of
the objects [19].

3 Results and Discussion

3.1 Experiment I: Spatial and temporal correlation (RQ1)

The data acquisition process could achieve a mean relative acquisition
error of 27.3% at 0.1 m

s , 24.7% at 0.15 m
s , and 66% at 0.24 m

s . Further-
more, the relative acquisition error at 0.1 m

s , at 0.15 m
s and 0.24 m

s is
zero, as the acquisition rate relates to the conveyor belt speed. An in-
crease in conveyor belt speed from 0.1 m

s to 0.15 m
s and 0.24 m

s with the
same acquisition rate results in a relative acquisition error of 34% (48%).
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Speed
level

Speed
interval

KF KNN HMM

[ m
s ] [ m

s ] PNC MNC History
Dist2

Threshold

max

Distance

0.10 0.10 I(4 × 4) · 0.9 I(2 × 2) · 0.5 60 320 70

0.10 0.15 I(4 × 4) · 0.9 I(2 × 2) · 0.5 60 300 70

0.10 0.24 I(4 × 4) · 0.9 I(2 × 2) · 0.5 60 320 70

0.15 0.10 I(4 × 4) · 0.9 I(2 × 2) · 0.3 60 340 70

0.15 0.15 I(4 × 4) · 0.9 I(2 × 2) · 0.3 60 340 70

0.15 0.24 I(4 × 4) · 0.9 I(2 × 2) · 0.3 60 340 70

0.24 0.10 I(4 × 4) · 0.9 I(2 × 2) · 0.3 60 200 70

0.24 0.15 I(4 × 4) · 0.9 I(2 × 2) · 0.3 60 200 70

0.24 0.24 I(4 × 4) · 0.9 I(2 × 2) · 0.3 60 200 70

Table 2: Object tracking parameters for (i) KF, (ii) KNN and (iii) HMM based on speed
levels and intervals.

Starting with a speed level of 0.15 m
s while decreasing (increasing) the

conveyor belt speed to 0.1 m
s (0.24 m

s ) leads to a relative acquisition
error of 38% (36%). The relative acquisition error at the speed level of
0.24 m

s is 64% when the speed is decreased to 0.15 m
s and 134% when

it is decreased further to 0.1 m
s . As shown in Figure 3a, the number of

particles counted at a speed level of 0.24 m
s , with a speed interval of

0.1 m
s , is 117. That is, the acquisition rate depends on the conveyor belt

speed, which remains constant at this specific speed level and interval.
Furthermore, an increase in the conveyor belt speed at a constant ac-
quisition rate, for example, from 0.1 to 0.24 m

s , results in 48% of the
particles being missed, whereas a decrease in the conveyor belt speed
from 0.24 to 0.1 m

s results in more than double the number of parti-
cles. Consequently, this demonstrates that pre-defined time intervals
probably do not enhance model performance, even when employing
the best deep-learning models. In contrast, the use of a rotary encoder
couples the temporal component to the conveyor belt speed, resulting
in a relative acquisition error of zero for each speed level. That is,
the spatial correlation shows neither redundant nor missing particles,
whereas edge cases cannot be avoided, as there are 1 at 0.1 m

s and 1 at
0.24 m

s . Nevertheless, this enables precise control of the data acquisition
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Data acquisition method for recyclable waste streams

Figure 3: Acquisition without encoder using time intervals (a) Manual counted vs.
tracked particles in consecutive frames and (b) redundant and missed parti-
cles with edge cases at different speed levels: 0.1 m

s , 0.15 m
s and 0.24 m

s .

system through automated fine-tuning of the acquisition rate based on
the conveyor belt speed. This ensures data integrity of datasets used
for deep-learning models, thereby helping to create datasets that are
free from bias and noise.

3.2 Experiment II: Object tracking (RQ2)

Additionally, object tracking provides the capability to count particles
in consecutive frames within the acquisition system, independently of
whether it is controlled by a rotary encoder. Consequently, the combi-
nation of KF, KNN, HMM and a rotary encoder ensures the real-time
creation of datasets with ground truth information, achieving a count
accuracy of almost 100%. As shown in Fig 3.a, the system can track
particles with a deviation of ± 1 particles (=total tracked) of the total
ground truth. This dual capability serves to reduce labor time and en-
hance the validation of the data acquired by using knowledge of the
ground truth to address class imbalance in classification problems. It
also enables targeted strategies to effectively balance different classes.
However, increasing the conveyor belt speed above 0.24 m

s requires en-
hancing the responsiveness of the KF to changes by increasing the PNC.
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Figure 4: a) object tracking: unique identifiers for each particle by b) extracting particles
from background using background subtraction.

Consequently, a reduction in MNC is essential to prevent the system
from missing rapid changes. As shown in Fig. 4, background sub-
traction allows particles to be separated from the background. In this
context, a lower Dist2Threshold provides the capability to track fast-
moving objects, while the history remains resilient to higher conveyor
belt speeds (see Table 2).

4 Conclusion and Outlook

In this study, an automated data acquisition method for dataset cre-
ation was investigated by leveraging two approaches. The first ap-
proach allows for addressing the issue of temporal and spatial correla-
tion to deal with data sparsity and redundancy by avoiding noisy and
biased data. The mean relative acquisition error was observed to be
27.3% at 0.1 m

s , 24.7% at 0.15 m
s , and 66% at 0.24 m

s when extracting
frames using a predefined time interval. In contrast, employing a ro-
tary encoder achieved an impressive accuracy of 100%. On the other
hand, object tracking can track particles in real-time to determine the
dataset’s ground truth with an accuracy of 99% ± 1% to allow for en-
hanced data validation by leveraging ground truth knowledge to tackle
class imbalance in classification problems, ultimately leading to more
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Data acquisition method for recyclable waste streams

reliable and robust deep-learning models. It remains to be seen how
performance changes at higher speed levels. Furthermore, a data ac-
quisition system that considers dynamic temporal correlation has the
potential to enhance the data quality of high resolution RGB area im-
age datasets, thus allowing for higher generalization capabilities as
a trained model does not memorize duplicated objects (i.e., skewing
the model). Consequently, the capacity for more effective material as-
sessment is enabled for sensor-based real-time characterization while
reducing labor time and biased training, testing, and validation data
during pre-processing. Further research is recommended to explore
the effects of higher conveyor belt speeds, which is necessary for scal-
ing up to technical or industrial scale aimed at acquiring novel datasets
from various recyclable waste streams. Additionally, decoupling of the
conveyor belt speed from a rotary encoder could enable the design of
an RGB-based speed measurement system for flexible integration in
industrial applications.
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